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Critical points and intermediate phases on wedges of Zd 

J T Chayes?S§ and L Chayest$§ 
Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, 
France 

Received 16 August 1985 

Abstract. We examine the phase structure of self-avoiding walks, the k ing  magnet and 
bond percolation defined on subsets of Z d ,  d 3 2, which have the geometry of wedges. We 
prove that if the cross sectional area of the wedge diverges with its width, then the high 
temperature critical point of any of these models defined on the wedge coincides with that 
of the corresponding model on the full lattice. For the Ising magnet and bond percolation, 
we show that there is a non-trivial low temperature critical point if the cross sectional area 
of the wedge diverges logarithmically with its width. Moreover, for bond percolation we 
show that the low temperature critical point of a logarithmic wedge may be made arbitrarily 
close to that of the full lattice by taking the coefficient of the logarithm large enough. 
Corollaries to these theorems include the existence of an intermediate phase for the Ising 
magnet and bond percolation on logarithmic wedges and the existence of a first-order 
transition for percolation models on a subclass of these wedges. 

1. Introduction and summary of results 

Recently there has been some interest in the critical behaviour of statistical mechanical 
models defined on subsets of the hypercubic lattice Z d .  Cardy (1983) used renormalisa- 
tion group methods to determine the critical behaviour of O ( N )  magnets defined on 
a wedge-like subset of hd, bounded by two ( d  - 1)-dimensional hyperplanes. Daoud 
et a1 (1975) and Barber er a1 (1978) considered similar questions for polymers. More 
recently, there have been studies of self-avoiding walks in wedges by Cardy and Redner 
(1984) and Guttman and Tome (1984). 

Motivated by this work, Hammersley and Whittington (1985) studied the con- 
nectivity constant for self-avoiding walks on wedges of Hd. They defined a wedge, 
Hd(f), to be a subset of E d  with coordinates ( x ,  , . . . , xd)  satisfying x 1  2 0, OS lxil S f ; ( x , )  
for i = 2, . . . , d. Hammersley and Whittington proved that if f ; ( x )  + cc as x + m, then 
the connectivity constant ofthe wedge hd(f) is identical to that ofthe full d-dimensional 
lattice. This result seemed to be in curious contrast to the work of Grimmett (1981, 
1983) on two-dimensional bond percolation. Grimmett proved that a ‘wedge’ must 
widen at least logarithmically with distance from the origin (with coefficient depending 
on p - p c )  in order that there be percolation in the wedge at density p .  This apparent 
inconsistency between self-avoiding walks and two-dimensional percolation was noted 
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by  Hammersley and Whittington (1985) who, in addition, showed that a weaker form 
of the Grimmett result holds for bond percolation in all d 3 2 and conjectured that 
similar results should hold also for the Ising magnet. 

In this paper, we examine the types of questions addressed by Grimmett (1981, 
1983) and Hammersley and Whittington (1985) in the context of self-avoiding walks, 
bond percolation and the [sing magnet. The purpose of our analysis is threefold: first, 
we resolve the apparent inconsistency between the behaviour of self-avoiding walks 
and percolation models in wedges. Second, we extend several of the results of Grimmett 
and Hammersley and Whittington to a larger class of models and to general dimension. 
Finally, by combining some of these results, we show that it is possible to obtain rather 
unusual phase structures for percolation and the Ising magnet in wedges of certain 
geometry. 

In order to explain the distinction between the percolation results of Grimmett and 
the self-avoiding walk results of Hammersley and Whittington, we recall some basic 
properties concerning the phase structure of these models. Since the phase structure 
of percolation is similar to that of the more familiar Ising magnet, let us begin by 
reviewing the latter. As usual, the Ising magnet is defined by the partition function 

z A ( p )  = exp[ - p H h ( { u l } ) ]  H . 4 ( { ' l } )  = - 2 (1.1) 
(=,} ( I , J )  E A 

where the u, takes values * 1 and ( i ,  j) denotes a nearest-neighbour pair of A c Zd. 
The high temperature ( p  << 1) phase is characterised by exponential decay of correla- 
tions, (upJ)- exp[ - M ( P ) ) i  - j l ] ,  while (in d 2 2 )  the low temperature ( p  >> 1) phase 
is characterised by a non-zero spontaneous magnetisation, ( C T ~ ) ~ , +  > 0. (Here ( )p,+ 

denotes expectation with respect to the Gibbs measure induced by plus boundary 
conditions.) 

Similar phases occur for the bond percolation model. Here one takes the bonds 
of Hd to be occupied with independent probability p E [0,1]. Each configuration of 
occupied bonds divides the lattice into connected components. The analogue of the 
two-point function is the connectivity, T ~ ,  which is the probability (with respect to 
Bernoulli measure) that i is in the connected component, C (  j ) ,  of occupied bonds o f j :  

~ ~ ( p )  = Prob,{iE C ( j ) } .  (1.2) 
The existence (with probability one) of an infinite cluster is determined by whether 
the percolation probability 

(1.3) 
is positive. For this model, the low density ( p  << 1) phase is characterised by exponential 
decay of connectivities, T ~ ~ (  p )  - exp[ - m( p ) ( i  - j / ] ,  while (in d 3 2 )  the high density 
(( 1 - p )  << 1) phase is characterised by percolation, i.e. Pa( p )  > 0. 

As should be clear from the above discussion, one can define two a priori different 
critical points for either the Ising magnet or percolation. In the former case, there is 
a low temperature critical point, p:,  such that the system exhibits spontaneous magneti- 
sation for p > Pt ,  and a high temperature critical point, p : s  pt, such that correlations 
decay exponentially whenever p <PE. Similarly, one may define the percolation 
threshold, p c ,  as the point above which Pa( p )  > 0, and the critical point r r c S p c ,  below 
which ~ ~ ( p )  decays exponentially. Such points need not coincide; indeed, as proved 
by Frohlich and Spencer (1981), the Z, models for n sufficiently large have an 
intermediate (Kosterlitz-Thouless (1973) type of) phase in which there is algebraic 
decay of correlations. The absence of an intermediate phase for the Ising magnet on 
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the full lattice has been known for d = 2 since the exact solution of Onsager (1944) 
and has been established for d 5 3 by Aizenman (1985). For bond percolation on the 
hypercubic lattice, Kesten (1980) has shown that rC = pc  in d = 2,  but similar results 
(though widely believed) have not been proved for d 5 3. 

The self-avoiding walk is distinguished from the above models in that a low 
temperature phase does not occur. This is a consequence of the fact that the self- 
avoiding walk is defined by a generating function 

G i j ( a ) =  1 exp(-alwl) 
w :  i - j  

(1.4) 

which is the analogue of the two-point function in the Ising magnet or the connectivity 
in bond percolation. In (1.4), the sum is over all self-avoiding walks from i to j along 
the bonds of Z d  and IwI is the length of the walk w. Viewed in this light, it is clear 
that self-avoiding walks have no phase characterised by a non-zero order parameter 
analogous to the spontaneous magnetisation or the percolation probability. Indeed, 
self-avoiding walks have only a ‘high temperature’ critical point ac ,  above which 
G,(a) - exp( - p ( a ) l i  - j \ ) ,  and below which these quantities diverge. 

The distinction between the type of behaviour found by Hammersley and 
Whittington (1985) for self-avoiding walks and that found by Grimmett (1981, 1983) 
for two-dimensional percolation is simply that the former is characteristic of the ‘high 
temperature’ critical point, while the latter pertains to the ‘low temperature’ transition. 
In order to establish a connection between the high temperature transition and the 
self-avoiding walk result of Hammersley and Whittington, in § 3 we discuss some 
entropic considerations which prove that a ,  = inf{ alp( a )  > 0) is precisely the logarithm 
of the connectivity. Thus the Hammersley and Whittington result may be reformulated 
by saying that whenever self-avoiding walks are defined on a wedge of divergent width, 
the ‘high temperature’ critical point coincides with that of the full lattice. In § 3, we 
prove that such a result holds not only for self-avoiding walks, but also for the Ising 
magnet and bond percolation. Indeed, coincidence of the high temperature critical 
point of any divergent wedge with that of the full lattice is generic. 

In § 4, we turn to a consideration of the low temperature phase, and thus restrict 
attention to the Ising magnet and percolation. Here, the issue is the rate at which the 
wedge must widen in order to obtain either spontaneous magnetisation or percolation. 
Hammersley and Whittington (1985) proved that for bond percolation on Zd,  d 2 2 ,  
the necessary and sufficient condition to achieve percolation for p sufficiently close to 
one is that a (symmetric) wedge widen at least as fast as the ( l / ( d  - 1))th root of the 
logarithm of the distance from the origin. (In other words, the cross sectional area 
must grow at least as fast as the logarithm of the distance.) In 0 4, we provide a proof 
of this type of behaviour which holds for both percolation (for p sufficiently close to 
one) and the Ising magnet (for /3 sufficiently large). Our proof implies that there exist 
wedges with logarithmically growing cross sectional area such that p c  < p,( W) < 1 and 
Pt  < Pk( W )  < 03, where pc(  W) and /3:( W )  denote the percolation threshold and low 
temperature critical point, respectively, of the wedge. Combining this with high 
temperature results of § 3-namely, that T, = nC( W )  and = PE( W)-it is clear that 
such systems exhibit an intermediate phase. This phase is characterised by subexponen- 
tial decay of correlations, but zero spontaneous magnetisation or percolation proba- 
bility. 

In § 5, we address more sensitive questions concerning the low temperature (or 
high density) critical point in percolation: namely, if p > p c ,  how fast must a wedge 
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widen in order that it exhibit percolation at density p ?  This is precisely the question 
answered by Grimmett (1981, 1983) for two-dimensional percolation. Grimmett 
showed that whenever p exceeds the two-dimensional percolation threshold, there will 
be percolation in a logarithmically growing wedge on 2’ provided that the coefficient 
of the logarithm is sufficiently large. Hammersley and Whittington (1985) conjectured 
that analogous results should hold for d 3 3. Partial, but not optimal, results along 
these lines have been obtained by Grimmett (1984) who showed that it is possible to 
achieve percolation in a wedge of Z3 of logarithmic cross section if p exceeds (the 
two-dimensional threshold). In 0 5, we use rescaling techniques to prove the 
Hammersley and Whittington (1985). In order to avoid excessive provisos, we restrict 
the (appropriately defined d-dimensional) percolation threshold, then there is a 
coefficient of the logarithmic cross sectional area large enough to achieve percolation. 

Finally, we study questions concerning the optimal coefficient of logarithmic growth 
(i.e. the smallest coefficient such that there is percolation). For percolation in d = 2 ,  
Grimmett proved that such an optimal coefficient exists (Grimmett 1981) and that it 
is continuous (Grimmett 1983). Moreover, his proof also showed that this coefficient 
is precisely the dual correlation length of the percolation model on the full lattice. 
The latter result suggests that the scaling of the optimal coefficient as p .1 p c  is related 
to that of other parameters of the system. Motivated by this, in 0 5 we give a different 
proof of Grimmett’s result which shows, as a corollary, that it is possible to construct 
logarithmic wedges in which the percolation transition is first order in the sense that 
the percolation probability is discontinuous at the transition point. 

2. Definitions and preliminaries 

As discussed in 0 1, we shall focus attention on three models: the self-avoiding walk, 
bond percolation and the nearest-neighbour Ising magnet. Each of these models can 
be defined on general subsets of the bonds of the hypercubic lattice Zd. The subsets 
of principal concern to us here will be the telescopes (T, a )  defined as follows. 

Dejnition. Let T = { T , ,  T2, . . . , T,, . . .} and a = { a , ,  a , ,  . . . , a , ,  . . .} be sequences of 
positive integers. The telescope ( T ,  a )  is the subset of Z d  with coordinates satisfying 

O S x , S  TI T , S X , S  TI+  T2 
1x215 1x31, . * . 7 Ixdl IX21, 1x31, . 9 . 9 /xd I $- a2 

For convenience, we shall often use the notation Aj = 2:=, ai for the (strictly increasing) 
sequence of partial sums. 

These telescopes are of course just the increasing symmetric wedges treated by 
Hammersley and Whittington (1985). In order to avoid excessive provisos, we restrict 
our analysis to telescopes and hence symmetric wedges, since the extension of the 
results to the non-symmetric case is obvious. It should be noted that every telescope 
is a divergent wedge, since the sequence of widths A = { A , ,  . . . , A,, . . .} is strictly 
increasing. 
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For a general subset of Zd,  the models under consideration have already been 
defined in 3 1, where a few of their properties were reviewed. In particular, we have 
said that the high temperature phase is characterised by exponential decay of correla- 
tions in the sense that 

~ < ~ E = s u p { ~ I l i m ( - ~ - '  log(uoaL),)= M ( P ) > o }  for the Ising magnet 
L-aS 

for percolation (2.2) 

a > a ,  = inf{al lim( - L-' log GOL(a)) 3 p ( a )  > 0) 

(Here L denotes both a point along, say, the x1 coordinate axis and the distance of 
the point from the origin.) On the other hand, the system is in the low temperature 
phase if 

for self-avoiding walks. 
L - m  

for the Ising magnet 
(2.3) 

P > P:  = inf{PIboOjf3.+ > 0) 

p>pc=inf{plPm(p)>OI for percolation. 

Henceforth, we shall use the above notation for the critical points of the full d -  
dimensional lattice (suppressing the relevant d dependence) and distinguish the corre- 
sponding critical points of the telescopes (T, a )  with superscripts. 

Of course it requires some work to show that the above definitions are meaningful. 
In particular, the high temperature critical points make sense only if one can establish 
existence of the masses M ( P ) ,  m ( p )  and p ( a ) .  For percolation and the Ising magnet, 
this is easily accomplished by invoking the Hams-FKG inequalities (Harris 1960, 
Fortuin er al 1971), which provide a subadditive bound. It should be noted that rTT, 
(respectively, PE) is often defined as the point at which the expected cluster size 
(respectively, the susceptibility) diverges. That the more standard definitions coincide 
with those given above (on the lattice Z d )  follows from the results of Hammersley 
(1957) in the case of percolation and from the Simon (1980) inequality for the Ising 
magnet. 

The existence of the mass p ( a )  for self-avoiding walks is somewhat more subtle. 
The basic problem here is that self-avoiding walks are not subadditive. One way to 
circumvent this difficulty is to consider cylinder self-avoiding walks w,: 0 + L, which 
are by definition self-avoiding walks along bonds lying strictly between the hyperplanes 
x1 = 0 and x, = L. The corresponding generating function 

(2.4) 

has a well defined mass -limL+w L-' log QoL(a) .  It has been shown (Chayes and 
Chayes 1986) that this limit is also the decay rate of GoL(a), and hence the latter 
(which we denote by p ( a ) )  exists. In 3 3, we will use the equivalence of the cylinder 
and full masses in our proof of the Hammersley and Whittington result. 

It is worth noting that one can also define cylinder masses for Bernoulli percolation 
and the Ising magnet. In the former case, one simply restricts to configurations in 
which there is a connection between 0 and L within the cylinder region. For the Ising 
magnet, one must calculate correlations conditioned on free boundary conditions at 
x1 = 0 and x1 = L. In both cases, equivalence of the cylinder and full mass follows 
immediately from the Hams-FKG inequality. 
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The definition of the low temperature critical point also requires some care. For 
the telescope ( T ,  a ) ,  we define the spontaneous magnetisation as (~o)'pf;+"', where ( )bf'+"' 
is the limit of the sequence of conditional measures in which the spins along the 
hyperplane x1 = L are taken to be + 1. That a unique limiting measure exists can be 
established by the usual methods (e.g. by the FKG ordering ofthe conditional measures). 

3. Coincidence of high temperature critical points 

In this section, we prove that the high temperature critical point of any telescope 
coincides with that of the full lattice and show that, in the case of self-avoiding walks, 
this is equivalent to the result of Hammersley and Whittington (1985). 

Our first theorem states that, for all of the models under consideration, the mass 
in any telescope is equal to the mass of the full d-dimensional lattice for all values of 
parameter. This of course implies coincidence of (high temperature) critical points. 
The proof-which is a standard technique for establishing continuity of decay rates- 
will be made explicit only for the case of self-avoiding walks. Identical proofs hold 
for Bernoulli percolation and the Ising magnet, with the Harris-FKG inequality provid- 
ing the necessary subadditivity. 

Theorem 3.1. Let ( T ,  a )  be any telescopic subset of Zd.  Then 

M ' y p )  = M ( P )  vp E R' 

m(r+) (  p )  = m( p )  VP E LO, 11 

p ' T ' a ) ( a )  = w ( a )  V a  ER+. 

Roo$ For self-avoiding walks, we rely on the equivalence of the full mass p ( a )  to 
the cylinder mass, as discussed in 0 2. Consider then the cylinder generating function 
QoL(a) .  Indeed, let us begin by further restricting the geometry and considering only 
those cylinder walks contained in the 'tunnel' Ixz/, . . . , / x d /  <A .  The corresponding 
generating function, Q&( a ) ,  has a well defined (finite) decay rate: 

which satisfies 

and (by subadditivity) provides an a priori bound: 

Q & ( a ) ~ e x p [ - p A ( a ) ~ I .  

We will demonstrate that V a  

lim p A ( a )  = ~ ( 0 ) .  
A - x  

(3.3) 

(3.4) 

For simplicity, let us assume p ( a )  > -aco. (The case p ( a )  = -a is just as easy to 
handle.) For any E > 0, we have 

(3.5) Q M ( ~ )  3 exp[ - ( p ( ~ )  - E)LI 
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once L is large enough. Let E > 0 and choose Lo large enough. Using the obvious fact 
that Qob( a )  = limA+m Qtb(a), we have 

(3 .6)  lim exp[ - p " ( a ) ~ ~ ]  3 lim Q&,( a )  = oOh( a )  5 exp[ - ( p ( a )  - &)Lo] 
A-CC A+CC 

which completes the demonstration. 
Theorem 3.1 is now a foregone conclusion. Indeed, if one is willing to travel a 

finite distance down any telescope, a region subsuming any tunnel can be found. 
Explicitly, let E > 0 and consider a tunnel with A so large that pA( a )  - E < p (  a ) .  Then, 
given the telescope (7'' a ) ,  let J be the smallest integer such that A, X{=l ai > A and 
define R(J)=X;=,  T,. We have V L  

exp[ - aR(J)IQtL:(a) QFi% (3.7) 

which implies p (  a )  = P ( ~ % " ) (  a ) .  
It is easily seen that an identical proof holds if QOL( a )  is replaced by T ~ ~ (  p )  or 

(aouL)p. One need only use the Harris-FKG inequality to obtain the bound (3.3), and 
to establish monotonicity where necessary. 

Defining the high temperature critical points as in equation ( 2 . 2 ) ,  we have the 
following. 

Corollary 3.1. 

It is also easy to recover the self-avoiding walk result of Hammersley and 
Whittington (1984) as follows. 

Corollary 3.2. Let A denote the connectivity constant for self-avoiding walks on Zd,  i.e. 

N ( n )  = + { w : O +  + (  IwI = n } -  A "  

(where - is meant in the sense of logs and limits) and let A","' denote the corresponding 
quantity for walks restricted to the telescope (T, a )  = Zd. Then 

A ( T , a )  = A. 

Proof: In equation (2.2), a,  was defined as the value of a at which the decay rate 
/*(a) becomes non-zero. That euc also counts the number of self-avoiding walks (in 
the sense that e"C=A) can be seen by the following argument (Abraham et al 1984, 
Chayes and Chayes 1985, 1986). We again restrict to cylinder walks and rely on the 
fact that the connectivity for such walks is identical to the unrestricted connectivity. 

First we define r k (  L )  = * {  w,: 0 + x, x, = LI I w,I = kL}. For a given rational k 3 1, 
if we let L +  00 along a sequence of lengths such that T,(L)  > 0, it is not difficult to 
show that rk(L) grows exponentially, i.e. 

rk(L) - exP[l(k)LI (3.8) 
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and, by subadditivity, rk(  L) 4 exp[ l( k)L]VL.  Moreover, l( k) is concave in k, and 
thus extends to a unique continuous function on all real k 5 1. Next, it can be shown 
that l( k) is related to p(  a )  via a Legendre transform: 

-p(a)=sup{t ; (k)-ak)  (3.9) 
k 

and thus may be identified as the entropy (see Abraham et a1 1984, Chayes and Chayes 
1985, 1986). From (3.9), it is seen that if a,  is defined as the value of a above which 
p(a)>O, then 

(3.10) 

On the other hand, we may count the number of (cylinder) self-avoiding walks. 
To this end, we write the identity 

N ( n ) =  r k ( L )  
k, L 

k L = n  

which implies that for any ko 

(3.11) 

so that 

lim n-' log N (  n) 5 sup l( k)/ k. 
n+sC k 

(3.13) 

To obtain a bound in the other direction, note that the number of terms on the RHS 

of (3.11) cannot exceed n. Thus 

N ( n ) ~ n  max r k ( n / k ) .  (3.14) 
I r k s n  

Using the U priori bound r k ( L )  G exp[l( k ) L ]  and relaxing the restriction on k, this 
implies 

(3.15) n-' log N ( n ) <  n-' log n-tsup L ( k ) / k  
k 

which, together with (3.13) and (3.10), completes the identification en.= A. 

4. Existence of low temperature and intermediate phases 

We now turn to an investigation of the low temperature phase for Bernoulli percolation 
and the Ising magnet on a certain class of telescopes. Existence of a low temperature 
phase for Bernoulli percolation in telescopes on Zd, d 3 2, has already been examined 
by Hammersley and Whittington (1985). They showed that the necessary and sufficient 
condition for Pm(p)  > 0 at some p < 1 is that the cross sectional area of the telescope 
grow at least logarithmically. In theorem 4.1, we provide a proof of this which holds 
for both percolation and the Ising magnet. (In the latter case, we show that ( u ~ ) ~ , +  > 0 
at some non-trivial p.) Our proof of necessity (theorem 4. l (a))  is essentially the same 
as that of Hammersley and Whittington (1985), although they did not seem to realise 
that a proof along these lines holds also for the Ising magnet. 

Theorem 4.1, combined with theorem 3.1 on the high temperature critical point, 
implies the existence of intermediate phases for Bernoulli percolation and the Ising 
magnet in certain telescopes of logarithmically growing cross sectional area. 
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Theorem 4.1 ( a ) .  Suppose there is a A > 0 such that the telescope (T ,  a )  c Z d  satisfies 

e~p[A(2A,)~- ' ] s  T j  (4.1) 

for j large enough. Then percolation does not occur if p < 1 -e-' and the spontaneous 
magnetisation is zero if p < (1/4)(A - log 2). 

Proof: Let us first consider Bernoulli percolation in telescopes satisfying (4.1). By 
exploiting the well known device of duality, the statement that there is no percolation 
is equivalent to the statement that, with probability one, there is a hypersheet of ( d  - 1)- 
cells dual to vacant bonds which severs the origin from infinity. In telescopes, such 
sheets must be pierced by the x1 axis. 

We can estimate the probability of such a sheet in the crudest fashion. Indeed, we 
consider only the event of a completely flat sheet orthogonal to the x1 axis. Since the 
events of flat sheets are uncorrelated, the probability that a surface occurs somewhere 
on the j th  segment of the telescope has the lower bound 

If (1 - p) > e-', it is seen that for j sufficiently large, each segment has a reasonably 
good chance of exhibiting a sheet. Thus, with probability one, infinitely many separat- 
ing sheets occur. 

The proof for the Ising magnet is almost as easy. Here the object is to show that 
) ( T , a )  @,+ = 0 if p < O(A). To this end, we note that the spontaneous magnetisation must 

vanish if, with probability one, there is a hypersheet of minus spins which separates 
the origin from infinity. 

As in the percolation proof, the probability of this can be bounded below by the 
probability of a flat sheet of minus spins orthogonal to the x1 axis. Unfortunately, 
these events are correlated between layers. Let us therefore bound the probability that 
a flat minus sheet occurs in any layer by the probability that it occurs in an odd layer. 
By the FKG inequality, this is in turn bounded below by the probability of a flat minus 
sheet in an odd layer conditioned on the event that every even layer has exclusively 
plus spins. Estimating this, we obtain the bound 

Prob,(3 a dual hypersheet in the j th  segment) 3 1 - (1 - (1 - P ) ( ~ ~ J ) ~ - ' )  q. (4.2) 

Prob(3 a minus hypersheet in the j th  segment) 

1 - (1 - (4 e-48 ( r  1)/2 1 ) J- 

from which the result follows. 
(4.3) 

A converse statement, which demonstrates the existence of a low temperature phase, 
is also straightforward. 

Theorem 4.1 (b).  Suppose there is a A < 00 such that the telescope ( T, a )  c Z d  satisfies 

for all j large enough. Then percolation occurs if p is sufficiently close to one and the 
spontaneous magnetisation is positive for p sufficiently large. 

Roo$ Consider first the Ising magnet, with conditional measures ( )r;a)~ obtained by 
setting to plus all spins along the hyperplane x1 = L. We must show that, uniformly 
in L, the origin retains spontaneous magnetisation for p large enough. To this end, 
we use the Peierls-Griffiths estimate (Peierls 1936, Griffiths 1964): 

TJ ~ e x p [ A ( 2 A ~ ) ~ - l ]  (4.4) 
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Here r,( T, a )  is the set of all contours, y, composed of dual (d  - 1)-cells which separate 
spins of opposite type and sever the origin from the boundary x1 = L of the telescope 
(T, a)L.  For any given contour y E r,( T, a ) ,  Prob( y )  s exp( -2plyl), where IyI denotes 
the volume (i.e. number of ( d  - 1)-cells) of the contour y. 

In order to obtain an estimate on the sum in (4.5), we must classify all contours 
in r,( T, a) .  A natural classification scheme is in terms of the earliest segment of the 
telescope which the boundary, ay, of the contour y visits. We will say that y E I‘(,)( T, a )  
if T, s min(x, coordinate of a y )  < Z:=, T,. The Yo)( T, a )  clearly form a (disjoint) 
partition of r,( T, a ) .  It will suffice to obtain an upper bound on the number of contours 
y E r(’)( T, a )  and a lower bound on the area of each such contour. 

For a given contour y, let us denote by { p , }  the set of ( d  -2)-cells of dy  with 
minimum x1 coordinate. We will overestimate the size of r(’)( T, a)  by calculating the 
probability of a contour with p ,  = p for some fixed p in the boundary of the j th  segment 
(thus double-counting any contour for which { p , }  contains more than a single 
( d  - 2)-cell). 

It turns out that we must divide each set r(’)( T, a )  into two sets depending on 
whether p ,  has the x1 coordinate in the initial ‘vertical’ annular boundary of the j th  
segment or whether p ,  lies along the ‘horizontal’ boundary of the j th segment (see 
figure 1). Let us denote the former set by p( T, a )  and the latter by r?’( T, a ) .  

It is reasonable to expect that the probability of a contour in the first class, rkj’( T, a ) ,  
should be bounded above, independent of T,. Let us show that this is the case. To 
this end, note that any contour y E r?)( T, a )  has its ‘leftmost’ boundary cell p ,  on the 
initial boundary of the j th  segment, which is a square annulus of internal radius A,-l 
and external radius A,. Let us denote by N, the minimum distance of p ,  from the 
internal hole of the annulus. We can further partition rv)( T, a )  into sets rtL( T, a )  
in which N, = N, N = 0,. . . , NiAx, where N!& is a function of A,.-l and A,. The 
volume of any Y E  rkL( T, a )  has the obvious lower bound / y (  3 (2A,-1)d-1+ N. Now 
let us estimate the number of such contours. To do this, first note that the number of 
( d  -2)-cells, p ,  located a distance N from the internal hole is 2(d - 1)[2(A,-, + N)Id-’. 
For any given p,  we use the elementary fact that the number of contours of volume n 
with boundary passing through a fixed ( d  -2)-cell is bounded above by a Peierls 
estimate exp(pdn), Pd <a. Thus 

C Cv(p)(2Aj-,)d-2Nd-2 exp{ - K ( ~ ) [ ( ~ A ~ - ~ ) ~ - I +  NI} (4.6) 
with Cv(p)+ 1 and K ( ~ ) + W  as p+a .  Finally, we may relax the constraint that 

:yn 
j t h  segment j t h  segment 

(01 (61 

Figure 1.Contours y ;  ( a )  y E r t ’ ) ( T , a ) ;  (6) y E r k ’ ) ( T , a ) .  
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N s Ngix  and sum over all N to obtain 

Prob(yEry’(T, a ) ) <  Cv(p)(2Aj-l)d-’ 
4r 

x e x p [ - ~ ( p ) ( 2 A , - ~ ) ~ - ’ ]  N d - ’ e x p [ - ~ ( P ) N ]  
N =O 

= C:(p)(2Aj-,)d-2 exp[ - K ( P ) ( ~ A ~ - ~ ) ” - ’ ]  (4.7) 

which is independent of T,, as expected. 
The second (and principal) class of contours, rp’( T, a ) ,  is, in fact, easier to handle. 

Here we see that each y E r?)( T, a )  has volume IyI 2 (2Aj)d-1. In order to count the 
number of contours, we first note that the number of ( d  -2)-cells, p, in the ‘horizontal’ 
boundary of the j th  segment is 2(d - 1 )  Tj(2Aj)d-’, and then use the Peierls estimate 
on the number of contours passing through a given p .  The result is 

C ch(p)q(2A,)d-2 eXp[ - ~ ( @ ) ( 2 A j ) ~ - ’ ] .  (4.8) 

Finally, we use our assumption (4.4) on the growth rate of the telescope to obtain 

Prob(yErp’(T, a ) ) <  Ch(p)(2A,)d-2 exp{-[K(p)-A](2Aj)d-1}. (4.9) 

Summing (4.7) and (4.9) over all j ,  and recalling that K ( p )  + as p + 00, we see 
that z,,vsr,(T,a) Prob( y )  tends to zero uniformly in L as p + Co. Thus, by taking p large 
enough, (4.5) implies that (u0)ria)L> 0 uniformly in L. 

The proof for percolation is essentially identical. We simply use the analogue of 
(4.5) for the probability that the origin is connected to the plane xl = L by a path of 
occupied bonds within the telescope ( T ,  a ) L .  Then the contours y are composed 
of (d - 1)-cells dual to vacant bonds, so that the factor of exp(-2p) in the estimates 
(4.6) and (4.8) is replaced by (1 - p ) .  

Remark. It turns out that convergence of the sum X 7 G r L ( T , a )  Prob(y), uniformly in L, 
is sufficient to guarantee (uo)r$) > 0 or PLT,a)( p)  > 0. Indeed, by the Borel-Cantelli 
lemma, finiteness of the sum implies that, with probability one, only a finite number 
of contours appear in the system. From this, one can easily show that, with positive 
probability, there are no contours. 

Corollary 4.1. If (T ,  a )  satisfies the conditions of theorem 4.l(b),  then there is a low 
temperature phase, i.e. 

p y $ ) < i  
- 2 ( p d  + A )  < 

Ph’” < 1 - eXp[ - (pd + A ) ]  < 1. 

Furthermore, combining theorems 3.1, 4.1( a )  and 4.1( b ) ,  we have the following. 

Corollary 4.2. Suppose that ( T ,  a )  satisfies 
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Then P1,"+"2(1/4)(A-log2) and pir3"'21-e-A. In particular, if (1/4)(A-log2)> 
p:cr*Q1 or 1 - e-A > rLr9"), there is an intermediate phase characterised by subexponential 
decay of correlations but zero spontaneous magnetisation or percolation probability. 

J T Chayes and L Chayes 

5. The low temperature critical point and first order transitions in percolation 

In the last section, we proved that there is a low temperature phase in logarithmic 
telescopes, but our estimates on the critical point were far from optimal. Here, we 
restrict our attention to percolation and show that the critical point in wedges of 
logarithmically growing cross sectional area may be made arbitrarily close to that of 
the full lattice in the sense that if p exceeds a critical value p^$, introduced by Aizenman 
et a1 (1983) and conjectured to equal p c  of the full lattice Zd,  d > 2, it is possible to 
find a coefficient of logarithmic growth sufficiently large that there is percolation in 
the corresponding wedge. Assuming j?$ = p c ,  this generalises the two-dimensional 
result of Grimmett (1981, 1983) and proves the conjecture of Hammersley and 
Whittington (1985). 

In the second part of this section, we restrict attention further to two-dimensional 
percolation and show that there exists a special class of logarithmically growing wedges 
for which the percolation transition is discontinuous. 

5.1. The low temperature critical point for wedges on Zd, d > 2 

Consider the bond percolation model on quadrant slabs i k  = (h+)' X (0, . . . , k } d - 2 ,  
d > 2, where (Z')2 denotes the positive quadrant of 2'. One may define a corresponding 
percolation threshold p*E as the value of p above which the origin has positive probability 
of being connected to infinity within the slab i k .  The critical point p̂ : is then defined 
as the limit of these slab thresholds: 

p^F= lim &'. (5.1) 
k-tm 

It is natural to conjecture, as was done in Aizenman et a1 (1983), that j?? = p c ,  where 
p c  is the percolation threshold of the full lattice Zd. The content of theorem 5.1 (below) 
is that the threshold of a logarithmic wedge may also be made arbitrarily close to p̂ : 
by taking the coefficient of the logarithm large enough. 

Our proof of theorem 5.1 relies on some rescaling techniques, introduced in 
Aizenman et a1 (1983) and briefly reviewed below. There it was shown that, from the 
lattice Zd, one can construct a rescaled lattice with squares of size J x J x kd-' as 'sites' 
and a nearest-neighbour distance of L ( L >  J, k ) .  Moreover, for each pair of these 
nearest-neighbour sites, it is possible to define a renormalised bond event with the 
following properties: (i)  the bond events are transitive in the sense that if one occurs 
between sites i and j ,  and another occurs between sites j and 1, then i must be connected 
to I by a path of (microscopic) occupied bonds; (ii) a given bond event is independent 
of all other bond events except those with which it shares an endpoint site and (iii) 
if p => St, the probability of a given bond event tends to one as J and L tend to infinity 
in an appropriate manner. Thus, provided that one considers bond events on 2d 
independent rescaled sublattices, one recovers a Bernoulli bond system with an effective 
bond density p(J,  L )  that can be made arbitrarily close to one by taking J and L large 
enough. 
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Theorem 5.1. Let d > 2 and suppose p > $2. Then there is a A = A(p) > 0 such that 
any telescope ( T, a )  c zd satisfying 

T, d e~p[A(p) (2A~)~- ' ]  

has p > p:"''. 

(5.2) 

ProoJ The proof is a combination of the Peierls argument of theorem 4.l(b) and the 
rescaling construction reviewed above. Let A, < CO. Then, by corollary 4.1 to theorem 
4.l(b), if (1 - p )  exp[(pd +A,)] < 1, there is percolation in any telescope which satisfies 
T, 6 e~p[A,(2A~)~- ' ]  fo r j  large enough. Indeed, if we require that p satisfy the stronger 
condition (1 - p )  exp [(2dpd + A,)] < 1, then the Peierls estimate may be performed on 
independent sublattices with the same result. 

Next, we use the rescaling construction to show that for any p>pI:, there is a 
rescaled lattice for which the above analysis holds. To this end, we observe that if 
p>pI:, then there is a k < m  such that p>pIt. Thus, for fixed A,<co, we can find 
J( = J( p ) )  and L( = L( p)) large enough so that the effective bond density of the rescaled 
lattice satisfies 

and consider any telescope (T, a)  which satisfies 

T, d e~p[A(p) (2A~)~- ' ] .  (5.5) 

Rescaling the bonds of (T ,  a),  we obtain a telescope (T  n )  in which the effective length 
of the j th  segment is q=[T,/L], and the effective cross section is (2Aj)dL1= 
[2Aj/L]f-'. (Here [ C ] ~  denotes the largest integer smaller than c.) Using (5.4) and 
(5.5), we have 

?;, d e~p[A,(2A~)~- ' ]  (5.6) 

for j large enough. However, by (5.3) and the Peierls argument, this implies that the 
rescaled bonds percolate on the telescope (T  ci) ,  and hence that the original bonds 
percolate on (T ,  a). 

5.2. Characterisation of the percolation iransition in wedges on Z2 

Thus far, we have examined the question of whether a transition occurs in wedges 
and, if so, the location of the critical point. Here, we restrict attention to wedges of 
Z2 and examine the nature of the percolation transition. The key ingredient is a new 
proof of Grimmett's result (1981, 1983), which says that the optimal coefficient of 
logarithmic growth is exactly the dual correlation length of the percolation model on 
the full lattice B2. Equivalently, this means that the optimal coefficient of exponential 
growth of the T, is the dual mass for two-dimensional percolation. The nature of the 
transition will then be determined by corrections to exponential growth of the T j .  For 
example, we show that whenever these corrections are summable in j ,  the percolation 
probability is discontinuous at phTSa'. This is in marked contrast to the second order 
nature of the percolation transition on the full lattice Z2, for which Pm(p) is known 
to be continuous (Russo 1978). 
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Consider a telescope (T, a )  c Z2. In order to avoid excessive provisos, we shall 
henceforth assume that limj+m(2Aj)-1 log = A exists. For any such telescope (with 
A > 0), Grimmett (1983) found that there is a critical value p(A) above which percolation 
occurs. Indeed, he showed that p(A) is continuous and strictly monotone. 

An interesting consequence of Grimmett's proof, and the one with which we are 
principally concerned, is that p(A) is related to more familiar quantities in percolation 
theory. The relationship is most natural within the context of the inverse function 
A:(pc, l )+(O,co]  defined as 

A( p )  sup{A) lim (2Aj)-' log T, < A and p > p:T'"'}. (5.7) 
j + m  

In other words, A(p) is the largest coefficient of exponential growth for which there 
is percolation in the telescope at density greater than p .  In theorem 5.2, we give a new 
proof of Grimmett's theorem (1981, 1983) relating A(p) to the decay rate of the dual 
connectivity function, defined below. 

Consider Bernoulli bond percolation on Z2 at density p .  Denote by .ZL(p) the 
probability that the origin of the dual lattice Z2* is in the same connected cluster of 
dual bonds as the point ( L + ~ , $ ) E  Z2*. By subadditivity, it is easy to show that 

lim ( - L-' log 7ZL( p ) )  m*( p )  (5 .8)  
i + m  

exists. Furthermore, it follows from the results of Hammersley (1957),  Russo (1978) 
and Seymour and Welsh (1978) that m * ( p )  > 0 whenever p > p c .  

For the proof of theorem 5.2, we will need two other functions closely related to 
~ $ ~ ( p ) .  First, denote by t t L ( p )  the probability that the dual origin is connected (by 
dual bonds) to any point on the plane x1 = L+f .  Second, denote by R f ( p )  the 
probability that there is a left-right dual crossing of an L x  L square. It is not hard 
to show (Chayes e? a1 1985 or Chayes and Chayes 1986) that for p > p c ,  ttL( p )  and 
R T ( p )  also decay exponentially in the sense of (5.8) with decay rate m * ( p ) .  Finally, 
we note that tZL obeys the subadditive bound t Z L s  e-m*LVL. 

For bond percolation on Z2, m*( p )  = m( 1 - p )  by self-duality. It should be noted, 
however, that this plays no role in either the properties reviewed above or our proof 
of theorem 5.2. 

Theorem 5.2. Whenever p > p c ,  

U p )  = m * ( p ) .  

Proof: Let p > pc and consider a telescope ( T, a )  c Z2 which satisfies limj+m(2Aj)-1 
log = A. We must show that there is no percolation in (T ,  a )  if A >  m * ( p ) ,  while 
there is percolation if A < m*( p ) .  This will be done by Peierls' arguments similar to 
those of theorem 4.1. 

First suppose that A >  m*. Let us divide thejth segment into nj = [ T,/2AjII disjoint 
2Aj x 2Aj squares. The probability of a dual surface in the j th  segment is bounded 
below by the probability of such a surface occurring in at least one of these squares. 
This is given by 1 - ( 1  -RfA,)"j, which tends to one since A >  m*. Thus there is no 
percolation. 

Now suppose A<m*.  As in the proof of theorem 4 . l ( b ) ,  let us estimate the 
probability of dual contours by decomposing contours into the sets I-:)( T, a )  and 
I-?)( T, a ) .  Consider first contours in I-p( T, a) .  As before, the number of starting 
points for such contours is 2T, .  Now, however, we use the fact that the probability 
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of a contour from a given point on the boundary of the j th  segment to some point of 
the boundary of the ( j  + k)th segment, k = 0,1, . . . , is bounded above by t$,,2AJ. Using 
the subadditive bound on t$,,ZA,, we have 

Prob( y E r‘v’( T, a ) )  d 2T, exp[ - m*(p)(2Aj)] (5.9) 

which is the analogue of (4.8). 
The contours in r?’( T, a )  are also easy to handle. Again, we partition r?)( T, a )  

into the sets rt),( T, a ) ,  depending on the minimum distance of the starting point of 
the contour to the internal hole of the annulus. In two dimensions, there are only two 
starting points for contours in a given rtL( T, a ) .  For each of these points, we bound 
the probability of a contour by f0, ,2AJ-,+N d exp[ - m*( P ) ( ~ A , - ~  + N)]. Summing over 
N, we obtain an analogue of (4.7): 

(5.10) Prob(y E r‘?’( T, a ) )  d C J p )  exp[ - m*(p)(2Aj-l)]. 

Summing (5.9) and (5.10) over all j ,  and using the fact that m* > A, we see that 

(5.11) 

uniformly in L. By the Borel-Cantelli lemma, etc, this implies that, with positive 
probability, no dual contours occur. Evidently, the percolation probability is positive. 

Corollary 5.1. Let p o  > p c  and suppose 

=f(Aj) exp[m*(po)(2Aj)l. (5.12) 

If X j  f ( Aj) < CD, then the percolation probability PLXu’( p )  is discontinuous at p o  = pa’”. 

ProoJ That pbXa’ = p o  (and hence that PLTTa’( p )  = 0 whenever p < p o )  follows immedi- 
ately from the theorem. To prove that P Z a ) (  p o )  > 0, note that the condition Xj,f(Aj) < CD 

implies that (5.9) is summable in j at p = p o .  Since (5.10) is summable for every p > p c ,  
we see that (5.11) holds also at p =pot and hence that the percolation probability is 
positive. 

Remark It is clear that, by suitable adjustment of the correction, f(Aj), to exponential 
growth, it is possible to produce a variety of critical behaviours, of which the first 
order transition demonstrated above is only one example. 
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